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ABSTRACT

Introduction: Computational brain network modeling using The Virtual Brain (TVB)

simulation platform acts synergistically with machine learning (ML) and multi-modal

neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer’s disease

(AD).

Methods: We enhance large-scale whole-brain simulation in TVB with a cause-and-

effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with

altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33

participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI3) combined

with frequency compositions of TVB-simulated local field potentials (LFP) forML clas-

sification.

Results: The combination of empirical neuroimaging features and simulated LFPs sig-

nificantly outperformed the classification accuracy of empirical data alone by about

10% (weighted F1-score empirical 64.34%vs. combined 74.28%). Informative features

showed high biological plausibility regarding the AD-typical spatial distribution.
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Discussion: The cause-and-effect implementation of local hyperexcitation caused by

Aβ can improve the ML–driven classification of AD and demonstrates TVB’s ability to

decode information in empirical data using connectivity-based brain simulation.

KEYWORDS

Alzheimer’s disease, machine learning, multi-scale brain simulation, positron emission
tomography, The Virtual Brain

1 INTRODUCTION

Alzheimer’s disease (AD) is a health problem with broad impact

on a patient’s personal life, as well as on our aging society. How-

ever, early diagnosis remains a challenge, and the knowledge of

underlying disease mechanisms is still incomplete. Besides the two

hallmark proteins amyloid beta (Aβ)1,2 and tau,3 4 other involved

factors have been identified, such as impairment of the blood–brain

barrier,5 synaptic dysfunction,6 network disruption,7 mitochon-

drial dysfunction,8 neuroinflammation,9 and genetic risk factors.10

While Aβ and tau are widely accepted as involved core features,11,12

their mutual interaction13 and interaction with other factors5 are

incompletely understood. Comprehensive knowledge of this multi-

factorial interaction in the pathogenesis of AD is crucial for further

therapeutic strategies, including recent developments of potentially

disease-modifying anti-Aβ therapy with aducanumab.14

The Virtual Brain (TVB, www.thevirtualbrain.org) is an open-source

platform for modeling and simulating large-scale brain networks by

using personalized structural connectivity models.15,16 TVB enables

model-based inference of underlying neurophysiological mechanisms

across different brain scales that are involved in the generation of

macroscopic neuroimaging signals including functional magnetic reso-

nance imaging (MRI), electroencephalography (EEG), and magnetoen-

cephalography. Moreover, TVB facilitates the reproduction and evalu-

ation of individual configurations of the brain by using subject-specific

data. In this study, we make use of virtual local field potentials (LFPs)

from simulated brain data from a recent experiment with TVB.17 In

our previous work,17 we integrated individual Aβ patterns obtained

from positron emission tomography (PET) with the Aβ-binding tracer
18F-AV-45 into the brain model. Consecutively, distinct spectral pat-

terns in simulated LFPs and EEG could be observed for patients with

AD, mild cognitive impairment (MCI), and healthy control (HC) sub-

jects (Figure 1). Such integration was done by transferring the local

concentration of Aβ to a variation in the brainmodel’s local excitation–

inhibition balance. This resulted in a shift from alpha to theta rhythms

inADpatients,whichwas located in a similar patternas local hyperexci-

tation in core structures of the brain network. The frequency shift was

reversible by applying “virtual memantine,” that is, virtual N-methyl-D-

aspartate (NMDA) antagonistic drug therapy. An overview of the study

results is provided in Figure 1.

AD-specific pathologies, such asdepositionofAβ in neuritic plaques,
tau deposition in neurofibrillary tangles, and atrophy of neural tissue,

have been widely studied with machine learning (ML) approaches.18,19

The major advantage of using ML-based classification algorithms on

neuroimaging data is the potential for recognizing complex high dimen-

sional previously unknown disease patterns in the data, potentially

identifying ADbefore clinicalmanifestation or predicting a disease tra-

jectory.

We further argue that the current sample size of 33 subjects is suf-

ficient to achieve a reliable proof of concept, considering the following

threemain aspects:

This study aims to show an information gain provided by TVB with

regard to differential classification among HC, MCI, and AD popula-

tions. We do not aim to push generalizability performance of state-of-

the-artMLmethodologieswith this sample size. This leads to a primary

focus on the group-level significance of the decoding accuracy rather

than the accuracies themselves.20

This information gain and the significance of the model perfor-

mances are validated by comparing the distributions of model accura-

cies between feature sets and against null distributions of accuracies

approximated using permutation testing.20

As implemented in our approach, nested cross-validation still repre-

sents thebestway toestimategeneralizability in thegiven context.21 In

combinationwith thepreviouspoints, this leads toa feasible and robust

estimation of the information gain.

We show that TVB simulations provide additional unique diagnos-

tic information that is not readily available using the available empir-

ical data alone. This supports the idea that TVB provides value and

real-world applicability above and beyondmerely reorganizing empiri-

cal data.

2 MATERIALS AND METHODS

2.1 Alzheimer’s Disease Neuroimaging Initiative
database

Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.

loni.usc.edu). The ADNIwas launched in 2003 as a public–private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial MRI, PET, other bio-

logical markers, and clinical and neuropsychological assessment can be

combined to measure the progression of MCI and early AD. For up-to-

date information, see www.adni-info.org.

http://www.thevirtualbrain.org
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
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2.2 Data acquisition, processing, and brain
simulation

Detailed methodology of data acquisition, selection, processing, and

simulation is described in a previous study.17 We included 33 ADNI-3

participants, thereof 10 AD patients, 15 HC participants, and 8 MCI

patients. The selection criteria included availability of both Aβ and

tau PET, diffusion-weighted MRI, and all MRI sequences necessary

to fulfill the standards of the human connectome project minimal

preprocessing pipeline.22 The number of participants was limited

because of restricted availability of all data modalities at once and

comparable scanners (only the largest subcohort, Siemens scanner

models with 3T, were included).17

In addition to the data used in our previous study,17 we also used

the distribution of tau in 18F-AV-1451 PET for our analyses to obtain

the best available empirical data basis. The nuclear signal intensity for

bothAβ and tau PET is related to a reference volume in the cerebellum.

For the subcortical volumetrics used in this study, we obtained the

volumetry statistics provided by the -autorecon2 command. The seg-

mentation is performed with the modified Fischl parcellation23 of sub-

cortical regions in FreeSurfer.24

A detailed description of image processing can be found inAppendix

A in supporting information.

Whole-brain simulations with TVB are based on a structural con-

nectivity (SC) matrix derived from diffusion-weighted MRI. After

processing the empirical imaging data, we used the SC of the HC

population to generate an averaged standard SC for all participants.

For the simulations, we made use of the Jansen-Rit neural mass

model.25,26 Neural mass models use a mean field simplification to

compute electrical potentials on a regional level by using oscillatory

equations systems.27 The variables, parameters, and model equations

can be found in Stefanovski et al.17 Parameter settings were chosen

due to theoretical considerations in previous studies.17,28 We explored

a range of the global scaling factor G, a coefficient that scales the con-

nection between distant brain regions, to capture different dynamic

states of the simulation. The novelty in our recent simulation study

was the introduction of a mechanistic model for Aβ-driven effects. We

linked local Aβ concentrations, measured by Aβ PET in 379 regions of

the Glasser29 and Fischl23 parcellations, to the excitation–inhibition

balance in the model by defining the inhibitory time constant τi as a
sigmoidal function of local Aβ burden.17

The simulation models electrical potentials in the whole brain, here

measured on the region level by LFPs using the same 379 regions as

above. In addition, we calculate the EEG signal as a projection of the

LFP from within the brain to the surface of the head, taking into the

concept of a lead-fieldmatrix simplification to three compartment bor-

ders brain–skull, skull–scalp, and scalp–air.15,30–32

A detailed description of the simulations can be found inAppendix B

in supporting information.

2.3 Machine learning approach

Our primary objective is to determine whether extracted features

from TVB add to the classifiers’ predictive power. To achieve this, we

RESEARCH INCONTEXT

1. Systematic Review: Machine learning has been proven

to augment diagnostics of dementia in several ways.

Imaging-based approaches enable early diagnostic pre-

dictions. However, individual projections of long-term

outcome as well as differential diagnosis remain difficult,

as the mechanisms behind the used classifying features

often remain unclear. Mechanistic whole-brain models in

synergy with powerful machine learning aim to close this

gap.

2. Interpretation: Our work demonstrates that multi-scale

brain simulations considering amyloid beta distributions

and cause-and-effect regulatory cascades reveal hidden

electrophysiological processes that are not readily acces-

sible throughmeasurements in humans.We demonstrate

that these simulation-inferred features hold the poten-

tial to improvediagnostic classificationofAlzheimer’s dis-

ease.

3. Future Directions: The simulation-based classification

model needs to be tested for clinical usability in a larger

cohort with an independent test set, either with another

imaging database or a prospective study to assess its

capability for long-term disease trajectories.

repeated theML procedure with three different feature sets: (1) using

empirical features alone, (2) using simulated features alone, and (3)

using both types of features to create a combinedmodel.

As simulated features, we used the 379 regional LFP frequencies

from the simulations from our previous study.17 As empirical features,

we used the global average and the corresponding 379 regional values

in Glasser29 and Fischl parcellation23 for each Aβ PET standardized

uptake value ratio (SUVR) and tau PET SUVR, moreover 40 subcortical

volumes, leading to 800 empirical features. The combined feature

space contains all the above with 1179 features (see the supporting

information Data section containing a list with all these features).

Therefore, we developed a methodology using extensive feature

reduction tominimize overfitting.

Two types ofML classifiers that are suitable for small-sample classi-

fication problemswere used: the kernel-based support vectormachine

(SVM)33 and the decision-tree–based random forest (RF).34

By training two classifiers based on different underlyingMLmecha-

nisms, we provide more robust evidence that the pattern in classifica-

tion performance, when combining simulated and empirical features, is

reliable and clinically relevant. Further, this pattern is driven by a reli-

ably reoccurring subset of the features themselves, rather than by par-

ticular mechanisms underlying a classification algorithm.

Our main results make use of a hybrid classification approach

in which a RF is used for feature selection to take advantage of

its ability to select features based on interactions between many

features together in an interpretable way,35 and an SVM is used for
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classification due to its relative reliability in small-sample non-linear

classification problems.36 The number of features selected by the RF is

restricted to amaximumof34 features, the square root of the total fea-

ture number (P= 1179). To validate our hybrid classification approach,

we ran experiments using either the RF or SVM alone as comparisons.

These results, along with additional details of the methodology, are

presented inAppendixC in supporting information. To summarize, they

show a significant improvement in classification performance using

the hybrid classification approach over either individual classifier. Our

ML approach is primarily designed to satisfy two goals:

Providing a robust, reproducible, and accurate evaluation of classifi-

cation performance with the data.

Facilitating exploration of the empirical and simulated features that

are most important for achieving optimal separation between the AD,

MCI, and HC groups.

To satisfy the first goal, we implemented a strict nested cross-

validation scheme that allows us to obtain statistically reliable classi-

fication performance metrics while minimizing overfitting in a P >> N

setting (i.e., we have a small sample size N, but a very large number of

features P). Our cross-validation method is adapted from earlier work

in ML for clinical neuroscience,37 and is described in greater detail in

Figure 2.

We satisfy the second goal in two ways. First, our cross-validation

scheme provides a natural metric for feature relevance, that is, feature

selection frequency across cross-validation runs. Additionally, we use

feature importance metrics inherent to each feature selection method

explored. In our case, the F-statistic and the entropy criterionwere two

metrics used for feature selection for the SVMand theRF, respectively.

Currently, the most reliable method for statistical control of predic-

tion accuracy is permutation testing.20 To this end, we performed the

same classification pipeline, including all feature preprocessing, fea-

ture selection, and cross-validation steps, using randomly shuffled class

labels. This was repeated 750 times to achieve a robust estimate of the

null model as an approximation for the inherent prediction error of the

model and chance classification results.

A detailed technical description of the ML methodology can be

found in Appendix C.

3 RESULTS

3.1 Data properties

We used basic descriptive statistics to assess data quality prior to

ML analysis. The distribution of simulated LFP frequencies, Aβ PET

SUVR, tau SUVR, and regional volumes and their interdependency are

shown in Figure 3. Aβ (P = 0.002) and tau SUVR (P < 0.001) are sig-

nificantly different between AD and HC after Bonferroni correction.

LFP frequency differs significantly between AD and MCI (P = 0.032)

but is not significant after Bonferroni correction. We do not see sig-

nificant differences in overall brain volume (AD and MCI [P = 0.706],

AD and HC [P = 0.510], or HC and MCI [P = 0.141]), but a tendency

toward ventricle enlargement and significant hippocampal atrophy in

AD.

3.2 Classification performance

Overall, we performed nine experiments spanning three different clas-

sification schemes and three feature sets (see Appendix D in sup-

porting information). The hybrid classification scheme with SVM and

RF performed best. For all schemes, the combined feature space out-

performed both the empirical and the simulated feature space (Table

SD.1 in supporting information). The results of the hybrid classification

approach are given below.

Weighted F1-scores (wF1) and normalized confusion matrices are

given in Figure 4. The combined approach (wF1 = 0.743) outper-

formed the empirical one (wF1 = 0.643) by about 0.1 (Figure 4D),

mainly because of an improvement in the classification of the MCI

group (Figure 4A–C). We used the Wilcoxon signed rank test from

100 cross-validation runs to assess significance (Shapiro–Wilk

test of normality for the wF1 distributions revealed P < 0.001 for

empirical and combined approach and P = 0.070 for the simu-

lated approach, leading to the usage of a nonparametric test). The

differences between the combined approach and both individual

approaches (empirical and simulated) were highly significant with

P < 0.001; meanwhile, there was no significant difference between

the empirical and simulated approaches (P = 0.340). Additionally, the

hybrid classification approach outperformed the SVM-only approach

(wF1 = 0.718) and the RF-only approach (wF1 = 0.670) for the

combined features.

3.3 Classification validity

As a further analysis to understand this classification improvement,

we calculated the feature importance. Figure 5A shows the mean

entropy-based feature importance given by the RF classifier for

100 outer cross-validation runs. This is used to show that there is a

decreasing curve, as we would expect if meaningful features were

found (as opposed to a more uniform distribution). Many of the more

important features seem to be biologically plausible in the context of

AD (Figures 5B and 6, full list in supporting information Data).

We also showed that feature relevance is dependent on the struc-

tural degree of the regions in the underlying SC network (Figure 5C).

This is an indicator of network effects contributing to the improved

classification and another indicator for meaningful classification

results.

Using the Wilcoxon signed rank test, we could further show that

the classification performance was significantly higher than the null

model (with P < 0.001 for all three approaches). The average per-

formance of the combined approach showing the greatest distance

to the corresponding null model laying outside the 100% interval

(Figure 5D).
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F IGURE 1 Modified from Stefanovski et al.17 Aβ-PET-driven brain simulationmodel of AD. (A): Regional PET intensity constraints regional
parameters. A sigmoidal transfer function translates the regional Aβ load to changes in the excitation-inhibition balance. (B) Virtual AD patient
brains exhibited significantly slower simulated LFPs thanMCI andHC virtual brains and showed a shift from alpha to theta frequency range.While
the AD group is solely dominated by two clusters in the alpha and theta band, the groups of HC andMCI have an additional strong cluster
exhibiting no oscillations (frequency of zero), called a stable focus. This phenomenon is absent in the AD group. The stable focus in HC andMCI
virtual brains provides an additional—simulation inferred—distinctive criterion between groups. Although there has been observed a correlation
between high Abeta burdens and lower LFP frequencies only in the AD group,17 the spatial distribution of this LFP slowing is in addition
determined by network characteristics. Moreover, the observed slowing was spatially associated with local hyperexcitation. The graph in (C)
represents the SC, wherein the nodes’ size reflects the degree, while color corresponds to the relative postsynaptic potentials (relative to themean
postsynaptic potential of the simulation). The graph indicates that local hyperexcitation occurs in central parts of the networks. Aβ, amyloid beta;
AD, Alzheimer’s disease; HC, healthy controls; LFP, local field potential; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; PET,
positron emission tomography; PSP, postsynaptic potential; SC, structural connectivity

4 DISCUSSION

In this study, we show that the inclusion of virtual, simulated TVB

features into ML classification can lead to an improved classification

amongHC,MCI, and AD.

The diagnostic value of the underlying empirical features can be

improvedby integrating the features into amulti-scale brain simulation

framework in TVB. We showed an improvement in classification per-

formance when combining both the empirical and the virtual derived

features. The absolute gain of accuracy was 10%. Keeping in mind that

all differences between the subjects have to be derived from their Aβ
PET signal (because all other factors, e.g., the underlying SC, are the

same) this provides evidence that TVB is able to decode the informa-

tion that is contained in empirical data like the amyloid PET. More spe-

cific for the PET and its usage in diagnostics, it highlights the relevance

of spatial distribution, which is often not considered in its analysis.
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F IGURE 2 Nested cross-validation loop design. In this hybrid classification scheme, random forest (RF; feature selection) and support vector
machine (SVM; classification) are used jointly in both inner and outer loop of a nested cross-validation loop design. Starting in the outer loop:
stochastic cross-validation starts with 100 iterations using 25% of data (randomly selected per iteration without taking into account age or sex) for
testing. The training subset goes to the inner loop after the train–test split. In the inner loop: split data again just like in the outer loop to obtain
training set and validation set for an inner 10 cross-validation iterations with each hyperparameter setting (in total 192 combinations for RF and
384 for SVM, leading to 73,728 combinations with every 10 iterations). Next, we scale training features by subtracting themedian and dividing by
the interquartile range (makes them robust to outliers we identified above).We apply these scaling statistics calculated from the training set also
to the test set. Then, we iterate through hyperparameters (Tables SC.1 and SC.2 in supporting information). RF is used for feature selection.
Afterward, the remaining features are used for training the SVM classifier with specific hyperparameter settings.We track the selected features
for each run and compute the frequency with which they are selected across iterations for the outer loop. The SVM classifications are validated
with the test sub-subset (inner cross-validation). This provides optimized hyperparameter settings from the inner cross-validation loop. Back to
the outer loop, we recombine training and validation data (which were separated in the inner loop)—still keeping test data separate.We set
hyperparameters to the best settings obtained in the inner loop. Then, we train themodel and record results: RF is again used for feature selection,
which leads to feature importance (FI) statistics used for the results. Afterward, SVM classifies the reaming features, which are then validated with
the test set (outer cross-validation). After this, the next iteration of the outer loop begins

The main reason for this improvement seems to be a better clas-

sification of MCI subjects. Without the simulated features, the mod-

els frequently misclassify MCI subjects as HC. In contrast, the sim-

ulated features alone result in more misclassification of HCs as

either MCI or AD subjects compared to using the empirical fea-

tures alone. However, combining the empirical features with the sim-

ulated features appears to complement their strengths in a clini-

cally useful way; these models retain all or most of the ability to

correctly classify healthy controls with the empirical features and

retain much of the simulated features’ ability to classify MCI patients.

The processing inside TVB seems to reorganize the existing data

beneficially.

In theory, a larger number of available features could provide a

ML algorithm greater flexibility in finding useful combinations. This

is the case simply due to a higher degree of freedom during feature

selection andweighting. However, the equal empirical data foundation

(only PET as individual features) in combination with a nested cross-

validation method protects from an overfitting bias due to the larger

feature space, with additional evidence of this provided by the chance

level performance of the null distributions. If the explanation for the

improvement in classification accuracy were simply the presence of

additional noisy features, we would see a flatter feature importance

distribution than shown in Figure 5, and therefore a more random dis-

tribution of selected features across the 100 cross-validation itera-

tions. Instead, we see that only a few featureswith high importance are

consistently guiding classification, indicating that they in fact provide

useful discriminative information. Preventing this kind of overfitting

via feature selection is a key motivation behind our use of the nested

cross-validation approach (Figure2): Because the features are selected

on the training and validation (test) set in the inner loop, any overfitting

due to feature selection should not be transferred to the test set in the

outer loop.
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F IGURE 3 Characteristics of empirical feature space. In (A), regional distributions of Aβ, tau, and LFP frequency are shown for all groups in a
3D scatterplot. Red data points symbolize regions of AD patients, green pointsMCI patients, and blue points HC. Each scatters point stands for
one region of one subject. Color density is normalized between groups. A kernel density estimate of the corresponding histograms is shown
(projection of the 3D plot to one axis). In particular, it can be seen a string of outliers with very high tau values in the AD group and in parts in the
MCI group, which does not appear for HC.Moreover, AD participants’ regions show higher Aβ values, in particular for lower frequencies. Besides,
boxplots are presented for groupwise comparisons for the features mean Aβ per subject, mean tau per subject, mean simulated LFP frequency per
subject, andmean volume per subject. A Kruskal–Wallis test was performed to assess significance: * marks significance with P< 0.05; ** marks
significance after Bonferroni-correction with P< 0.003 (for 15 tests). B, Aβ SUVR is significantly different between AD andHC (P= 0.002) and
MCI (P= 0.045), but not betweenHC andMCI (P= 0.811). C, Tau SUVR is only significantly different between AD andHC (P< 0.001), but not
between AD andMCI (P= 0.174) or HC andMCI (P= 0.267). D, LFP frequency is only significantly different between AD andMCI (P= 0.032), but
not between AD andHC (P= 0.216) or HC andMCI (P= 0.472). E, As themean volume of all regions (including, e.g., ventricles andwhite matter)
does not show significant differences (as expected because of volume shifts between parenchyma and CSF).We explored the data regarding
ventricle enlargement39 and hippocampal atrophy.40 Althoughwe see a tendency for both in the AD group, only the difference in hippocampal
volume reaches significance between AD andHC. Ventricle volumes: HC andMCI (P= 0.056), HC and AD (P= 0.116), MCI and AD (P= 0.910).
Hippocampal volumes: HC andMCI (P= 0.556), HC and AD (P= 0.003), MCI and AD (P= 0.144). Aβ, amyloid beta; AD, Alzheimer’s disease; CSF,
cerebrospinal fluid; HC, healthy controls; LFP, local field potential; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; PET,
positron emission tomography; PSP, postsynaptic potential; SC, structural connectivity; SUVR, standardized uptake value ratio

Wehave shown that only a few selected features seem to play a cru-

cial role in classification throughout the cross-validation iterations and

that these features play a biologically plausible role in the context of

AD (Figures 5 and 6).

As a limitation of our study, we see that the used simulated feature,

the mean simulated LFP frequency (averaged across a wide range of

the large-scale coupling parameter G), is not directly equivalent to a

biophysical measurement like empirically measured LFP. G scales the

strength of long-range connections in the brain network model and is

a crucial factor in the simulation. Many different dynamics can develop

across the dimension of G, from which some are similar to empirically

observed phenomena, but others are not. Our former work has found

that particular ranges of G with non-plausible frequency patterns

hold the potential to differentiate between diagnosis groups.17 This is

mainlybecauseof theunderlyingmathematics of the Jansen-Ritmodel:

besides two limit cycles that produce alpha-like and theta-like activity,

the local dynamicmodel has a region of stable focuswherein no oscilla-

tions are produced in the absence of noise. Technically, this stable focus

is represented as a zero-line artifact that appears mainly in the HC

group, because only Aβ values above a critical value led to the presence
of the slower theta-limit cycle. By averaging LFP frequencies across the

whole spectrum of G, we incorporate this zero-line information, which

leads to apparently higher mean LFP frequencies for the AD group

compared to non-AD groups. In contrast, in the region of biologically

plausible results, AD has lower frequencies, as would be expected.17

This can also be seen as another advantage of TVB. It shows how

TVB does not just reproduce data that could also be obtained with

EEG or intracranial electrodes, but delivers “artificial” data that

are still informative. While particular parameter ranges deliver

biologically plausible results, even other (less plausible) parameter

settings provide unique individual patterns and can contribute to the

classification.
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F IGURE 4 Results of the nested cross-validation classification approach. A–C, Confusionmatrices are computed by summing the confusion
matrices across all 100 cross-validation runs and normalizing per class. In particular, the combined approach improved the prediction ofMCI
participants, as AD andHCwere already quite well distinguishable by the empirical features. D, Boxplots of meanweighted F1-scores for three
different feature spaces. The combined approach (wF1= 0.743) outperformed the empirical one (wF1= 0.643) by about 0.1. Significance
assessment with theWilcoxon signed rank test from 100 cross-validation runs: combined versus empirical: P< 0.001; combined versus simulated:
P< 0.001, empirical versus simulated P= 0.340. AD, Alzheimer’s disease; HC, healthy controls; MCI, mild cognitive impairment;

This work’s primary aim is not to develop a ready-to-use ML classi-

fier for AD, but to show the potential of brain simulation to enhance

empirical datasets in clinically relevant ways. While the limited sam-

ple size used in this study would potentially be problematic in a more

traditional ML study aimed at providing an ML-based diagnostic aid,

combined with our careful cross-validation methodology, it does not

detract from our primary conclusion. Future studies will have to repro-

duce these results using a more extensive cohort for further clinical

usage of this work. Ideally, external validation with a dataset outside

of ADNI would be performed.

We used ML as an approach for the comparison of classifier per-

formance with empirical data against simulated data, which is wholly

derived from the empirical data. Improvement in classification is then

strong evidence for successful processing of the empirical data in TVB:

TVB decodes the information embedded within the empirical data

which cannot be detected by statistics orML classifiers. We showed in
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F IGURE 5 Feature importance (FI) distribution. A,Mean random forest (RF)-derived feature importance from 100 outer cross-validation runs.
Entropy criterion with combined feature types shown here. Feature importance values are normalized, so all features sum to one. In shaded blue,
half standard deviation 𝜎 is displayed for each feature. B, Top 50 features across all cross-validation runs. Both empirical (tau in dark blue, amyloid
beta [Aβ] in green, volume in light blue), as well as simulated frequencies (red), contributed to the improved classification. Many features seem
moreover to be biologically plausible in the context of Alzheimer’s disease (AD), as, for example, tau in entorhinal cortex (Braak stage 1),41 thalamic
dysfunction (as significant rhythm generator),42 and volumes in hippocampus (as signs of atrophy).40 C, Visualization of the structural connectivity
(SC) graphwith color indicating FI of the regional local field potential (LFP) frequencies, while vertex diameter reflects the structural degree. It
shows a network dependency of the LFP FI. Only edges with connection strength above the 95th percentile are shown. D, The distributions of
weighted F1 scores for permutation based null model (left box) and corresponding truemodel (right box). All models significantly outperform the
null model with the combinedmodel showing the greatest average distance to its null model, indicating the gain in differentiating information

ADNIdata that TVBcanderive additional informationout of the spatial

distribution pattern in PET images.

Our work provides novel evidence that TVB can act as a biophysi-

cal brain model and not just like a black box. Complex multi-scale brain

simulation in TVB can lead to additional information that goes beyond

the implemented empirical data. Our analysis of feature importance

supports this hypothesis, as the features with the highest relevance

are already well-known AD factors and hence, biologically plausible

surrogates for clinically relevant information in the data. Moreover, in

this pilot study, we demonstrate that TVB simulation can lead to an

improved diagnostic value of empirical data and might become a clin-

ically relevant tool.
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F IGURE 6 Anatomical representation of feature importance (FI) distribution. Displayed are cortical regions from left, right, and inferior as
well as subcortical regions. The color indicates the FI. A, Aβ FI. The anatomical patterns reveal high importance of left-temporal regions, as well as
the left dorsal stream in the parietal and occipital cortex. The Aβ top features showed amore disseminated allocationmostly in the temporal,
occipital, frontal, and insular cortices, which is also in line with typical amyloid deposition and locations of increased AV-45 uptake in AD.43 B, Tau
features show a similar pattern as Aβ, but with a higher focus on typical Braak stage 1 regions (as the entorhinal cortex). Most of the tau top
features can be allocated to the temporal lobe, which is also the location of early tau deposition according to the neuropathological Braak and
Braak stages I–III41,44 and the location of increased in vivo binding of 18F-AV-1451 in AD.45 In particular, the entorhinal cortex is a consistent
starting point of the sequential spread of tau through the brain44,45 and also showed themost robust relationship between flortaucipir and
memory scores in a recent machine learning study.46 C, Simulated frequencies do not show strong laterality as the empirical features but seem to
have a focus in both occipital lobes, where typically alpha oscillations occur. The occipito-temporal and occipito-parietal regions of the first area
are typical alpha-rhythm generators in resting-state electroencephalogram.47 Alteration of these posterior alpha sources is a typical phenomenon
in AD andMCI compared to HC.48 The ventral or “what” stream and the dorsal or “where” stream have been implicated in object recognition and
spatial localization and are essential for accurate visuospatial navigation.49 Impairment in visuospatial navigation is a potential cognitive marker in
early AD/MCI that could bemore specific than episodic memory or attention deficits.50 Besides this, subcortical areas like the thalami play amore
crucial role than for Aβ and tau. Aβ, amyloid beta; AD, Alzheimer’s disease; FI, feature importance; HC, healthy controls; MCI, mild cognitive
impairment
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